728x90
반응형
자동으로 ML Model tracking을 할 수 있다.
mlflow.모델 종류.autolog()를 사용하는데 start_run() 전에 넣어야한다.
# mlflow
import mlflow
import mlflow.keras
# data
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import numpy as np
# training
from train import tf_model
if __name__ == "__main__":
dataset = pd.read_csv("./dataset.csv")
X = dataset.iloc[:, 0:-3]
y = dataset.iloc[:, -3:]
train_x, val_x, train_y, val_y = train_test_split(
X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
sxtrain = scaler.fit_transform(train_x)
sxval = scaler.transform(val_x)
# autologging
mlflow.keras.autolog()
# mlflow
with mlflow.start_run() as run:
model, history, metrics, signature = tf_model(
sxtrain, train_y, sxval, val_y, run=run, epoch=30)
728x90
반응형
'AI > MLflow' 카테고리의 다른 글
[MLflow] Artifact Store (0) | 2024.02.29 |
---|---|
[MLflow] MLflow Model Registry (0) | 2024.02.28 |
[MLflow] MLflow Models (0) | 2024.02.28 |
[MLflow] MLflow Project (0) | 2024.02.27 |
[MLflow] MLflow Tracking (0) | 2024.02.27 |